Introduction to Animals

Section 3 Sponges and Cnidarians

← Main Idea

→

Details

Skim Section 3 of the chapter. Write two questions that come to mind from reading the headings and the illustration captions.

- 1 Accept all reasonable responses.
- 2.

Review — | Vocabulary

Use your book or dictionary to define diploid.

diploid

cell with two of each kind of chromosome

New_____ Vocabulary

Use your book or dictionary to define each term.

filter feeder

organism that gets its food by filtering small particles from water

sessile

organism that attaches to one place and stays there

cnidocyte

stinging cell

nematocyst

capsule holding a coiled, threadlike tube containing poison and barbs

gastrovascular cavity

in cnidarians, large cavity where digestion takes place

nerve net

nervous system of cnidarians that conducts impulses to and from all

parts of the body

polyp

cnidarian body form in which the body is tube-shaped with a mouth

surrounded by tentacles

medusa

cnidarian body form in which the body is umbrella-shaped with

tentacles that hang down

-Academic -Vocabulary

Define survive to show its scientific meaning.

survive

to remain alive

Name	Date

Section 3 Sponges and Cnidarians (continued)

←Main Idea

(Details—

Sponges

I found this information on page _____.

SE, pp. 705-709 RE, pp. 290-292 **Model** a sponge. Use the figure in your book to help you. Label the six parts that are listed in the table below on your diagram. Then describe the function of each part in the table below.

Diagrams should resemble the illustration on SE p. 706. Accept all reasonable responses.

Sponges			
Body Part	Function of Body Part		
Osculum	water and wastes are expelled through this mouthlike opening at the top of the sponge		
Epithelial-like cells	thin, flat cells that contract (and close pores) in response to touch or an irritating chemical		
Collar cells	cells that line the interior of the sponge; their flagella whip back and forth to draw in water		
Pores	cells that surround pores and allow water (with food and oxygen) into the sponge's body		
Archaeocytes	carry nutrients to other cells, aid in reproduction, and produce spicule chemicals		
Spicules	small, needlelike structures between cell layers that form the support structure		

Section 3 Sponges and Cnidarians (continued)

Main Idea

⊘Details

Cnidarians

I found this information on page ______.

SE, pp. 710-715 RE, pp. 292-294

Compare a polyp with a medusa by filling in the table.

	Polyp	Medusa
Body shape	tubelike	umbrella (bell)
Position of mouth	top side (dorsal)	underside (ventral)
Position of tentacles	top side (dorsal)	underside (ventral)

Model the complete life cycle of a jellyfish.

Diagrams should resemble \$	SE p. 712.	Accept all	reasonable
responses.			

SUMMARIZE

Compare cnidarians and sponges.

Accept all reasonable responses. Both groups have one body opening and two cell layers,
although cnidarian cell layers are organized into tissues. Cnidarians have radial symmetry, but
sponges are asymmetrical. Most cnidarians have polyp and medusa stages in their life cycle.

Most sponges have the same form throughout their life cycle.